

A CCD-based vertex detector

Report from the LCFI collaboration

Konstantin Stefanov

RAL

- Introduction: Conceptual design of the vertex detector for the future LC
- Detector R&D program at LCFI
 - **♦** Development of Column-Parallel CCDs and readout electronics
 - **♦** Experimental studies on a commercial high speed CCD
 - ♦ Thin ladder program for mechanical support of the sensors
- Summary

Detector parameters

Several times better than the SLD VXD3 detector...

- Impact parameter resolution: $s = 4.2 \text{Å} \frac{4.0}{p \sin^{3/2} q}$, [µm]
- Thin detector (< 0.1% X_0) for low error from multiple scattering
- Close to the interaction point for reduced extrapolation error
- Readout time: » 8 ms for NLC/JLC (read between trains)
 50 µs for TESLA (read the inner layer »20 times during the train)
- Pixel size » 20 μm ´ 20 μm;
- Large polar angle coverage;
- Stand-alone tracking: 4 or 5 layers of sensors;
- Radiation hard.

Conceptual design

- 5 layers at radii 15, 26 37, 48
 and 60 mm;
- Gas cooled;
- Low mass, high precision mechanics;
- Encased in a low mass foam cryostat;
- Minimum number of external connections (power + few optical fibres).

CCD development

Large area, high speed CCDs

- Inner layer CCDs: 100´13 mm², 2500(V)´650(H) pixels per CCD end;
- Outer layers: 2 CCDs with size 125´22 mm², 6250(V)´1100(H) pixels per CCD end;
- 120 CCDs, 799 106 pixels in total;
- For NLC/JLC: readout time » 8 ms in principle sufficient, but <u>not easy</u> to achieve with standard CCDs;
- For TESLA:
 - ❖ 50 µs readout time for inner layer CCDs : 50 Mpix/s from each CCD column
 - ❖ Outer layers: 250 µs readout, 25 MHz from each column

High speed requires different concept for fast readout – Column Parallel CCD (CPCCD)

Natural and elegant development of CCD technology

Column parallel CCD

- Serial register is omitted
- Maximum possible speed from a CCD (tens of Gpix/s)
- Image section (high capacitance) is clocked at high frequency
- Each column has its own amplifier and ADC requires readout chip

Column Parallel CCD Readout time = N/F_{out}

CCD ladder end

- Electronics only at the ends of the ladders;
- Bump-bonded assembly between thinned CPCCD and readout chip;
- Readout chip does all the data processing:
 - ♦ Amplifier and ADC with Correlated Double Sampling for each CCD column
 - ♦ Gain equalisation between columns
 - Hit cluster finding
 - ◆ Data sparsification
 - Memory and I/O interface
- CPCCD is driven with high frequency, low voltage clocks;
- Low inductance layout for clock delivery.

CCDs for NLC/JLC

CCDs for NLC/JLC machines

Multiple outputs considered for 8 ms readout time:

- L1: » 6 outputs/CCD end
- L2-L5: High parallel clock frequency required
 - Standard technology: » 80 outputs @ 50
 MHz, 1 µs parallel shift time;
 - » 20 outputs @ 50 MHz at 0.1 µs parallel shift time;
 - Readout chip very desirable

CCDs for L2-L5 may need high speed features as in the CPCCDs for TESLA:

- Gate metallization, low clock amplitudes;
- Low inductance bus lines, clock driver;

The same readout time achievable with CPCCD at 1.28 µs parallel shift time (780 kHz).

Column Parallel CCD

Important aspects of the CPCCDs for TESLA:

Quality of 50 MHz clocks over the entire device (area = 13 cm^2):

All clock paths have to be studied and optimised

Power dissipation:

- Low average power (» 10 W) for the whole detector, but large peak power (duty cycle = 0.5%);
- Low clock amplitudes
- Large capacitive load (normally » 2-3 nF/cm²)

Feedthrough effects:

- 2-phase drive with sine clocks natural choice because of symmetry and low harmonics
- Ground currents and capacitive feedthrough largely cancel
 Most of these issues are being studied by device simulations

Hybrid assembly CPCCD-CMOS

Standard 2-phase Field-enhanced 2-phase implant implant (high speed)

Metallised gates (high speed)

Metallised gates (high speed)

Features in our first CPCCD:

- **♦** 2 different charge transfer regions;
- **♦** 3 types of output circuitry;
- ♦ Independent CPCCD and readout chip testing possible:
 - Without readout chip use external wire bonded electronics;
 - Without bump bonding use wire bonds to readout chip;
 - CPCCD bump bonded to readout chip;
- ♦ Different readout concepts can be tested.

Readout chip design

A comparator using Charge Transfer Amplifier, repeated 31 times per ADC

- Readout chip designed by the Microelectronics Group at RAL;
- 0.25 µm CMOS process; scalable and designed to work at 50 MHz.

CPR-0:

- Small chip (2 mm ´ 6 mm) for tests of the flash ADC and voltage amplifiers;
- Successfully tested at 50 MHz, results applied to the next design;

CPR-1:

- Bump-bondable to the CPCCD;
- Contains amplifiers, 250 5-bit ADCs and FIFO memory in 20 µm pitch;
- Design almost completed.

Readout chip design

Wire/bump bond pads

In CPR-1:

- Voltage amplifiers for source follower outputs from the CPCCD
- Charge amplifiers for the direct connections to the CPCCD output nodes
- Amplifier gain in both cases: 100 mV for 2000
 e- signal
- Noise below 100 e- RMS (simulated)
- Correlated Double Sampling built-in in the ADC

Direct connection and charge amplifier have many advantages:

- Eliminate source followers in the CCD;
- Reduce total power to » 1 mW/channel, no active components in the CCD;
- Programmable decay time constant (baseline restoration).

Tests of high-speed CCDs

⁵⁵Fe X-ray spectrum at 50 Mpix/s

Test bench for high-speed operation with MIP-like signals

E2V CCD58:

- 3-phase, frame transfer CCD
- 2.1 million pixels in 2 sections
- 12 µm square pixels
- MIP-like signal (» 1620 electrons);
- **♦** Low noise » 50 electrons at 50 MHz;
- ◆ CCD58 is designed to work with large signals at 10 V_{pp} clocks;
 - No performance deterioration down to 5 V_{pp} clocks;
 - ♦ Still good even at 3 V_{pp} clocks.

Tests of high-speed CCDs

Radiation damage effects important for overall detector design

> Influence operating temperature, readout frequency, CCD design

Backgrounds:

- » 50 krad/year (e+e- pairs)
- » 10⁹ neutrons/cm²/y (large uncertainty)
- Bulk radiation damage effects on CCD58 being studied:
 - > Charge Transfer Inefficiency (CTI) important CCD parameter
 - ➤ How radiation-induced CTI behaves with temperature and serial frequency in the range 1 – 50 MHz;
- CTI should improve a lot at speeds > 5-10 Mpix/s to be verified;

Thin ladder R&D

A program to design CCD support structures with the following properties:

- Very low mass (< 0.4% X₀ SLD VXD3)
- Shape repeatability to few microns when temperature cycled down to » –100
 °C;
- Compatible with bump bonding;
- Overall assembly sufficiently robust for safe handling with appropriate jigs;

Three options:

- Unsupported CCDs thinned to » 50 µm and held under tension
- Semi-supported CCDs thinned to » 20 μm and attached to thin (and not rigid) support, held under tension;
- Fully-supported CCDs thinned to » 20 µm and bonded to 3D rigid substrate (e.g. Be)

Semi-supported option

Beryllium substrate with adhesive balls

Thinned CCD (» 20 µm)

FEA simulations using ALGOR and ANSYS:

- Distortions only few µm,
 optimise adhesive pitch and size;
- Silicone adhesive: NuSil, excellent at low temperature
- Layer thickness » 0.12% X₀

XY stage for 2-dimensional profiling being assembled:

- Laser displacement meter
- Resolution 1 µm
- Models made from steel + unprocessed Si will be measured

Summary

- Detector R&D work at the LCFI collaboration:
 - Development of very fast column parallel CCD and its readout chip;
 - ♦ Study the performance of commercial CCDs with MIP-like signals at high speeds and radiation damage effects in them;
 - **♦** Precision mechanical support of thinned CCDs.
- Most aspects of the R&D are applicable to all proposed LC machines;
- Work on high speed CPCCD is mainly for TESLA, however the CCDs for NLC/JLC may benefit as well;
- Significant R&D is required, challenging combination of chip size and speed;
- Have to work hard, R&D is extensive and complex;

More information is available from the LCFI's web page: http://hep.ph.liv.ac.uk/~green/lcfi/home.html